Covid-19 et intelligence artificielle : des usages rarement matures ne pouvant compenser la fragilité des systèmes de santé

Bibliographie de l’ouvrage “L’intelligence artificielle en procès”

Les multiples usages des technologies numériques en période de crise, dont l’informatique et cette fameuse « IA », illustrent leurs très larges potentialités. Mais très peu « d’IA » s’avèrent en réalité totalement matures, avec un impact opérationnel[1]. De plus, elles n’ont pu compenser ce qui a fait fondamentalement défaut : une mobilisation et une coordination mondiale soutenues pour affronter une crise globale dès le début de la pandémie. 

Lors des précédentes crises mondiales, comme la crise financière de 2008 et l’épidémie du virus Ebola de 2014, les États-Unis ont assumé une telle dynamique, mais l’administration américaine actuelle semble avoir renoncé à de telles ambitions, en abandonnant au passage ses alliés ou en tentant de s’assurer l’exclusivité des travaux d’une société pharmaceutique allemande. Ce sont la Chine, la Fédération de Russie et Cuba qui ont montré qu’ils supportaient matériellement l’Italie au pic de la crise. Si ces démonstrations relèvent de l’opération de communication et de lutte géopolitique, il y a toutefois là un changement de paradigme géopolitique majeur en cours, d’autant plus que la crise financière qui suivra cette crise sanitaire va encore fragiliser les solidarités entre les peuples[2]. Le Conseil de l’Europe pourrait être l’un des moteurs pour réaffirmer la nécessaire solidarité à développer entre les peuples européens pour mieux faire face à des défis globaux. Rappelons d’ailleurs que l’article 11 de la Charte sociale européenne (ratifiée par 34 des 47 États membres du Conseil de l’Europe) édicte déjà un droit à la protection de la santé qui engage les signataires « à prendre, soit directement, soit en coopération avec les organisations publiques et privées, des mesures appropriées tendant notamment : 1°) à éliminer, dans la mesure du possible, les causes d’une santé déficiente ; 2°)  à prévoir des services de consultation et d’éducation pour ce qui concerne l’amélioration de la santé et le développement du sens de la responsabilité individuelle en matière de santé ; 3°) à prévenir, dans la mesure du possible, les maladies épidémiques, endémiques et autres, ainsi que les accidents. »

Cette pandémie a aussi révélé la très grande fragilité des systèmes de santé, après des décennies de coupes budgétaires et de croyances que diverses applications technologiques, telles que « l’IA », allaient permettre de faire mieux avec moins. « C’est la foi d’un monde gérable comme une entreprise qui se cogne aujourd’hui brutalement à la réalité de risques incalculables » affirme Alain Supiot dans un entretien avec le magazine Alternatives Économiques[3]. « L’IA » a tenu une place de choix comme nouvel oracle en capacité de réduire toute forme de risque en nombre et ses usages ont contribué à substituer au cœur des missions des calculs d’utilité. Les systèmes de soins ont ainsi été saisis par une déconstruction de systèmes de solidarité garantis par l’État au profit d’une privatisation, d’une plus grande flexibilité et de la recherche d’efficience. Le management par le coût en est arrivé à primer sur la mission d’intérêt général et l’universalité des soins. Les projections, souvent surévaluées par l’industrie numérique, d’une « IA » capable de décharger les médecins de certaines tâches complexes pour les recentrer sur le cœur de leur mission ont d’abord servi la recherche de rentabilité et ont contribué à affaiblir la résilience des systèmes de santé.

Enfin, et c’est peut-être le plus inquiétant, les multiples usages de ces technologies numériques pour contrôler les populations dans cette période de crise ont également permis de faire gagner du terrain à un idéal sécuritaire. L’efficacité des mesures, présentées comme provisoires, risque de se banaliser et de constituer un nouveau quotidien afin de prévenir de nouvelles calamités[4]. Pensons par exemple à la proposition de « dépistage pair-à-pair » émise par Joshua Bengio et Vargha Moayed consistant à une évaluation de la probabilité d’infection d’un individu par une application mobile. Le recours à cet outil reposerait notamment sur « une pression sociale pour télécharger l’application afin de pouvoir se déplacer librement à l’extérieur dans des endroits où se trouvent d’autres personnes ». Les auteurs ajoutent que « les gouvernements pourraient rendre obligatoire l’utilisation de l’application pour accéder à certains lieux accueillant un grand nombre de personnes, tels que les épiceries, les écoles et les universités[5] ». Outre la question de la fiabilité d’une telle évaluation et des discriminations inévitablement produites, se pose la question plus fondamentale du « solutionnisme » de la proposition. Il peut sembler surprenant de proposer une solution technologique, à laquelle tout le monde n’aura d’ailleurs pas accès, pour régler ce qui est avant tout un problème de moyens alloués à la recherche médicale et aux établissements de soins. Ne vaudrait-il mieux pas en effet diriger l’argent que coûterait une telle solution pour permettre aux systèmes de santé de répondre à leur mission première : permettre à chacun d’accéder à des soins de qualité et, dans le cas d’épidémies, à des tests s’ils existent.

Les différentes applications de « l’IA » ont pu susciter des espoirs pour lutter contre le coronavirus, mais leur portée et leur intérêt diffèrent très fortement en fonction des cas d’utilisation. Particulièrement en période de crise, les différents usages devraient être objectivés sur la base de méthodologies robustes et éprouvées. Les informations mises à disposition des chercheurs, des soignants et du public devraient être fiables et transparentes. Dans un tel contexte, les standards en matière de protection des données, comme la Convention 108+ du Conseil de l’Europe, devraient pouvoir continuer à s’appliquer pleinement en toutes circonstances : qu’il s’agisse de l’utilisation de données biométriques, de la géolocalisation, de la reconnaissance faciale et de l’exploitation de données de santé, le déploiement d’applications en urgence doit pouvoir s’effectuer en concertation avec les autorités de protection des données et dans le respect de la dignité et de la vie privée des utilisateurs ainsi que de principes tels que la loyauté et la licéité. Les inévitables biais dans les divers types d’opérations de surveillance basés sur des données, susceptibles de créer d’importantes discriminations, sont ainsi à considérer[6]. En réalité, c’est l’entier logiciel du projet de société qui est susceptible d’être reformaté après cette crise sanitaire et nous devons prendre garde à ce que ces technologies soient des alliés de politiques globales de coopération et de partage des savoirs plutôt que des instruments surévalués au service de projets mercantiles. Et surtout, replacer enfin la mission de services publics, comme celui de la santé, au cœur de politiques centrées sur le progrès humain et non sur la seule performance économique.


[1] J. Bullock, A. Luccioni, K. H. Pham, C. Sin Nga Lam, M. Luengo-Oroz, Mapping the landscape of artificial intelligence applications against COVID-19, UN Global Pulse, 25 mars 2020

[2] R. Herreros, Coronavirus : L’Union européenne sera-t-elle la prochaine victime ?, Huffington Post, 26 mars 2020

[3] Alain Supiot : ‘Seul le choc avec le réel peut réveiller d’un sommeil dogmatique’, Alternatives économiques, 21 mars 2020

[4] Y.N.Harari, Yuval Noah Harari: the world after coronavirus, The Financial Times, 20 mars 2020

[5] V. Moayed, Y. Bengio, Dépistage pair à pair de la COVID-19 basé sur l’IA, Blog de Yoshua Bengio, 25 mars 2020

[6] A.F. Cahn, John Veiszlemlein, COVID-19 tracking data and surveillance risks are more dangerous than their rewards, NBC News, 19 mars 2020

Sur quelles bases construire une régulation proportionnée de l’intelligence artificielle ?

Bibliographie de l’ouvrage “L’intelligence artificielle en procès”

Nous sommes loin d’en avoir fini avec la définition de ce que serait exactement l’intelligence artificielle (IA). Un rapport technique du centre commun de recherche de la Commission européenne paru en février 2020 a procédé à une analyse approfondie de cette question (B. Delipetrev, G. De Prato, F. Martínez-Plumed, E. Gómez,  M. López Cobo, S. Samoili, AI Watch – Defining Artificial Intelligence: towards an operational definition and taxonomy of artificial intelligence, Joint Research Centre of the European Commission, 27 février 2020). Les chercheurs de ce centre ont tenté de classifier cette technologie en procédant à une revue des définitions existantes dans des rapports institutionnels, des publications scientifiques et des études venant du secteur privé de 1955 à nos jours. L’équipe de recherche en a conclu à la découverte de 4 caractéristiques communes : a) la perception d’un environnement et de la complexité du monde, b) le traitement de l’information, en collectant et en interprétant des signaux d’entrée, c) la prise de décision, incluant le raisonnement, l’apprentissage et la réalisation d’actions et d) l’atteinte de buts prédéfinis.

Le réseau d’expert de l’OCDE sur l’IA (OECD Network of Experts on  AI – ONE AI) en a fait également l’une de ses thématiques de travail dans le cadre de l’opérationnalisation de ses principes en proposant dresser une classification des « systèmes d’intelligence artificielle », entendus comme un « système automatisé qui, pour un ensemble donné d’objectifs définis par l’homme, est en mesure d’établir des prévisions, de formuler des recommandations, ou de prendre des décisions influant sur des environnements réels ou virtuels », lesquels « sont conçus pour fonctionner à des degrés d’autonomie divers ». Le Conseil de l’Europe définit pour sa part cette technologie comme un « ensemble de sciences, théories et techniques dont le but est de reproduire par une machine des capacités cognitives d’un être humain ».

Même si des points de convergence se dessinent, les multiples facettes de l’IA (et de ses applications) conduisent donc à de grandes difficultés pour établir une définition et une classification communément partagées. Que l’on adopte un champ large ou restreint pour définir l’IA, chacun semble y mettre une part de sa subjectivité et, surtout, se projette dans une perspective propre à son champ d’expertise. Les juristes se retrouvent souvent fort démunis face à des débats technologiques et ont bien du mal à circonscrire dans leur propre champ étude cet objet si particulier, dans l’objectif d’en réguler les usages à partir de concepts technologiquement neutres. 

Une définition juridique de l’IA 

Pour bâtir une définition juridique de l’IA, commençons tout d’abord par questionner l’IA au regard de ses finalités dans un sens très large. Pour reprendre les éléments communs de définition précédemment évoqués, l’IA sert tout d’abord à automatiser des tâches. Notons que toute forme de programmation informatique répond à cet usage et il faudrait parvenir à isoler la singularité de l’IA par rapport à d’autres programmes informatiques. En première analyse, l’IA est donc souvent caractérisée par un comportement particulier : sa capacité à interagir avec son environnement et à traiter des signaux d’entrée pour prendre des décisions dans un but prédéfini.

Or, là encore, tous les programmes informatiques traitent des signaux d’entrée dans un but prédéfini (qu’il soit calculatoire, d’adaptation, de modification, de classification, d’enregistrement, de consultation, etc). L’apparence de prise de décision d’une IA pourrait paraître la singulariser mais, là encore, tout programme procède à des choix d’une complexité variable. Et même si les derniers développements de l’apprentissage automatique (machine learning) se révèlent parmi les complexes, l’on doit admettre dans le même temps que la complexité ne crée pas de l’intelligence (M. Amblard, Idée reçue : Les algorithmes prennent-ils des décisions ?, Interstices, 29 mars 2018).

De plus, il semble insuffisant de ne considérer que la composante mécanique sans considérer les flux qui l’animent. Contrairement à un carburant se limitant à irriguer un moteur thermique de voiture, les données ont un rôle de plus en plus structurant sur leur moteur algorithmique, notamment avec l’emploi d’apprentissage automatique. L’IA devrait donc être considérée en ce qu’elle constitue un système, et très précisément un système algorithmique, composée à la fois de son mécanisme et des flux de données alimentant ce mécanisme. Systèmes d’ailleurs qui ne créent pas tous les mêmes risques au regard a) du domaine de leur emploi (certains étant plus à risques, comme la justice ou la santé) et de b) leur cas d’usage précis (un robot conversationnel ne créé pas les mêmes risques qu’un outil d’aide à la décision – Voir Livre blanc sur l’intelligence artificielle de la Commission européenne, 19 février 2020, p.20). En ce sens, deux axes pourraient être considérés pour classifier les systèmes algorithmiques.

Un premier axe à considérer par une régulation : explicabilité, déterminisme et autonomie d’un système algorithmique

Il convient, à nouveau, de constater que le terme IA a désigné des réalités technologiques qui ont évolué en fonction des méthodes à la mode : approche descriptive et symbolique dans les années 1970-80, en écrivant des règles logiques signifiantes, et connexionniste aujourd’hui, en laissant la machine « découvrir » les corrélations entre des phénomènes traduits en données (c’est en cela que l’on dit qu’elle « apprend »). Ces deux formes d’automatisation ne présentent toutefois pas les mêmes caractéristiques d’explicabilité de leur fonctionnement sous-jacent : celle-ci serait plutôt meilleure pour les approches descriptives et plus en retrait pour les approches connexionnistes. 

Si l’on questionne ensuite l’IA au regard du produit de son fonctionnement, l’on peut également catégoriser ses résultats au moins en deux formes : la première est déterministe et la seconde non déterministe. La première forme est assez simple à comprendre et assez rassurante. A chaque entrée sera systématiquement corrélée la même sortie. L’on peut ainsi espérer que pour des besoins simplement calculatoires, la machine puisse être dans la capacité de produire toujours le même (et le bon) résultat. La seconde est plus complexe à appréhender. A chaque même entrée, le résultat en sortie sera susceptible de varier en raison de l’évolution d’autres variables employées par le système : il est en ainsi par exemple des systèmes de recommandation sur des sites marchands dont le résultat peut varier non seulement en fonction de vos propres interactions, mais également des interactions des autres utilisateurs appartenant au même groupe de profil statistique. 

Enfin se pose la question de l’autonomie du système, soit qu’il soit en capacité, une fois programmé ou entraîné, de faire interagir un opérateur humain pour son résultat final ou, au contraire, de s’en dispenser pour s’adapter, de manière autonome, à son environnement. Il va sans dire qu’en l’absence d’humain dans la boucle, se pose la question de la correction de dérives de systèmes et des facteurs d’alerte conduisant à une intervention humaine et d’une attention encore plus accrue sur leur fonctionnement.

Nous considérerons donc que l’ensemble de ces trois caractéristiques constituent ensemble un indicateur de complexité du système algorithmique devant conduire à considérer des instruments juridiques différents en fonction du risque encouru. Il manque toutefois une dimension à corréler à cet indicateur : celle de l’intensité de l’impact sur les individus et la société.

Un second axe à considérer par une régulation : l’impact probable du système algorithmique

Tous les systèmes algorithmiques ne justifient bien entendu pas les mêmes contraintes. Il pourrait donc être développé le concept « d’impact significatif » sur les individus ou la société, afin d’introduire une forme de proportionnalité dans l’intensité des mesures contraignantes au regard, notamment, des risques de violation des droits fondamentaux. 

Une échelle d’impact pourrait être construite, à l’image de celle proposée par la Commission d’éthique des données allemande (Datenethikkommission), fondée sur la combinaison de la probabilité de la survenue d’un dommage et la gravité de celui-ci. La mesure de cet impact pourrait résulter d’un cadre méthodologique précis tel qu’une étude d’impact préalable sur les droits de l’homme (voir en ce sens la Recommandation de la Commissaire aux droits de l’homme du Conseil de l’Europe, Décoder l’IA : 10 mesures pour protéger les droits de l’homme, p.7).

Des modalités de régulation proportionnelles à la combinaison entre complexité et impact probable 

Afin de distinguer les systèmes algorithmiques sur lesquels devraient reposer les contraintes les plus fortes, il pourrait être réaliser une combinaison entre complexité et impact probable sur les individus ou la société. Ainsi les systèmes cumulant faible explicabilité, non déterminisme et large autonomie devraient faire l’objet de contraintes règlementaires importantes (voire une prohibition) si leur impact probable est très élevé. Des mesures ex ante (mise en service conditionnée à une vérification ou une certification préalable) pourraient être édictées et accompagnées des mesures ex post spécifique (revue régulière de fonctionnement par un tiers accrédité).

Aucun texte alternatif pour cette image

Les systèmes avec un faible impact probable pourraient ne faire l’objet que de contrôles facultatifs, laissés à la discrétion de leurs concepteurs. Les recours devant les tribunaux resteraient ouverts en toute hypothèse en cas de dommage, étant précisé que la nature des mesures prises par les concepteurs pour prévenir les risques seraient de nature à modérer (ou aggraver) ensuite leur responsabilité. L’on retrouve là les mécanismes classiques connus dans la plupart des systèmes juridiques, dont l’adaptation aux spécificités de procédures de conception de systèmes algorithmiques est envisagée par la Commission européenne (dans le cadre de la responsabilité du fait des produits défectueux notamment).

Pourquoi nous devrions (ne pas) craindre l’IA

Bibliographie de l’ouvrage “L’intelligence artificielle en procès”

À longueur d’annonces, de débats, de conférences, d’articles, de reportages ou de livres, l’on ne cesse de nous présenter l’intelligence artificielle (IA) comme la technologie de rupture de la décennie, peut-être même du siècle. Des opportunités sans limites semblent s’ouvrir à l’humanité dans la mesure où nous serions à même de prévenir les risques dans un contexte d’usages sans cesse plus généralisés. Le « papier blanc » (white paper) sur l’IA de la Commission européenne, publié le 19 février 2020, s’approprie ce constat et pose les grandes options des lignes politiques de l’encadrement de cette technologie pour les années à venir. 

Les fantasmes s’agrègent toutefois dans les innombrables discours portant sur cette technologie et la redoutable complexité technique animant les discussions entre experts conduit à emplir l’espace public de représentations où chacun y laisse un peu de sa subjectivité et de sa vision du monde. Ayant ringardisé le terme mégadonnées (big data) et tantôt confondu avec l’informatique, le numérique ou même internet (voire les blockchains !), le terme « IA » (qui sera employé entre guillemets en substitution aux termes plus appropriés d’applications de l’intelligence artificielle)est devenu en ce début de siècle le mot-valise de référence en matière de technologies, qui emporte avec lui une assez grande variété de préoccupations.

« L’IA », un terme plastique devenu synonyme de progrès

Il faut dire que ce coup de force rhétorique de John McCarthy et Marvin Minsky, forgé en 1955/1956, continue à se déployer avec une grande vigueur du fait de sa plasticité, pour ne pas dire de son imprécision. Car plus l’on s’intéresse au sujet, plus l’on apprend à s’éloigner de ce terme… et plus l’on devient incompréhensible pour les profanes : qui se soucie en effet des différents bénéfices et des limites des réseaux de neurones profonds, des machines à vecteur de support, des réseaux bayésiens, des arbres de décisions et des systèmes experts, en dehors des techniciens de ces matières ? Nous vivrions donc une véritable ère de l’approximation, où la précision des termes et la réalité de la portée des technologies importerait moins que ce que l’on espère en faire, ne serait-ce que pour se donner le sentiment de rester adapté à son époque.

D’une manière certainement plus troublante, il est extrêmement déstabilisant de voir que le bénéfice du recours à ces ensembles de technologies, dans les aspects parfois les plus intimes de notre vie courante, n’est même plus questionné et que plus personne ne cherche à convaincre de ses vertus. « L’IA » est devenu le progrès et l’on ne questionne pas le progrès. Antoinette Rouvroy constate en ce sens un certain assèchement de la qualité du débat public et rappelle que « la gouvernementalité algorithmique, bien que soutenue parfois par des discours ressuscitant l’idée de progrès, ne se présente plus tant comme une alternative aux autres formes de gouvernement que comme leur destin inéluctable » (A. Rouvroy, “Adopt AI, Think Later – La méthode Coué au secours de l’intelligence artificielle”, 2020).

Que l’on s’estime « pour » ou « contre » (ou même au-dessus de ces débats), il faudrait donc arriver avant tout à se départir de cette sorte de sidération collective nous ayant saisis. Il paraît urgent de revitaliser les débats sur l’emploi de cette « IA » en revenant à de très simples bases pour commencer à ordonner une pensée critique, constructive et ambitieuse, à même de protéger de manière effective les individus et la société d’une certaine forme de dérives scientiste et mercantile paralysant le débat démocratique et les choix de société.

« L’IA », c’est quoi ?

À s’en tenir à la définition donnée par la Commission d’enrichissement de la langue française, l’IA est le « champ interdisciplinaire théorique et pratique qui a pour objet la compréhension de mécanismes de la cognition et de la réflexion, et leur imitation par un dispositif matériel et logiciel, à des fins d’assistance ou de substitution à des activités humaines ». On se trouve donc dans le champ des sciences cognitives et à l’intersection avec l’informatique dont l’ambition générale d’automatisation de tâches peut aisément se confondre avec l’ambition précise d’imiter le fonctionnement du cerveau humain pour parvenir à cette automatisation. Pour le reformuler, « l’IA » est une forme particulière d’application de l’informatique, dont la réalité technologique a évolué en fonction des méthodes à la mode : approche descriptive et symbolique dans les années 1970-80, en écrivant des règles logiques signifiantes, et connexionniste aujourd’hui, en laissant la machine « découvrir » les corrélations entre des phénomènes traduits en données (c’est en cela que l’on dit qu’elle « apprend »).

Ce qui devrait bien plus nous intéresser donc en terme de régulation, ce sont les questions posées par des systèmes complexes d’algorithmes en général plutôt qu’une technologie précise, et ce pour une application particulière : la prise de décision sans action humaine. Il devrait, de plus, être systématiquement adjoint au périmètre de réflexion les données alimentant ces systèmes. Car, contrairement à un carburant irriguant un moteur thermique de voiture, les données ont un rôle de plus en plus structurant sur leur moteur algorithmique, notamment avec l’apprentissage automatique (machine learning). Ce qu’il y aurait alors à craindre, ce ne serait pas une autonomisation de la machine qui s’en prendrait à son concepteur comme dans un mauvais film de science-fiction, mais bien plus d’un excès de confiance dans le pouvoir de ces technologies pour prendre, en toutes circonstances, de meilleures décisions que nous.

Aller plus loin que la simple balance bénéfices / risques

Alors qu’il est le plus souvent réalisé une balance spéculative entre des bénéfices et des risques probables, l’on omet par cette démarche simpliste de s’interroger sur la capacité de ces machines à manipuler avec efficacité les concepts dont elles sont nourries. Ainsi, l’emploi en informatique de données objectives et quantifiables conduit à des résultats bien plus robustes qu’avec des données subjectives (nécessitant une interprétation pour être transformées en données) et qualitatives. Déduire du succès d’AlphaGo des potentialités révolutionnaires dans tous les champs de l’activité humaine relève ainsi d’un excès d’optimisme dont il convient de se garder. Des encadrements bien plus contraignants devraient peser sur les systèmes manipulant des concepts potentiellement hasardeux ou n’ayant pas de fondement scientifique sérieux.

La deuxième question bien souvent éludée est celle de l’importante dette intellectuelle qui est en train de se cumuler en empilant des systèmes complexes dont l’on ne parvient plus à reconstituer le raisonnement. Affirmer, comme le chercheur Yann LeCun, que l’explicabilité n’est pas importante si l’on arrive à prouver que le modèle fonctionne bien tel qu’il est censé fonctionner, encourage en réalité à l’abandon de toute prétention à construire des théories scientifiques solides pour bâtir des applications. Cela revient également à faire primer les résultats sur la connaissance et à privilégier des objectifs à court terme au détriment d’un investissement à plus long terme, seul capable de bâtir des fondements solides à même de nous aider à aller plus loin que les fragiles mécanismes de l’apprentissage automatique (machine learning).  

La troisième et dernière question qui est minimisée en se focalisant sur l’équilibre entre les bienfaits et les dangers de « l’IA » est celle, fondamentale, du type de société dans laquelle nous souhaitons réellement vivre. À entendre les discours majoritaires sur le numérique et « l’IA », ce sont aujourd’hui les données qui constituent le principal gisement d’avenir pour le développement économique. Les discours s’affirment centrés sur l’humain et préoccupés du respect des droits fondamentaux mais se fondent en réalité sur une mystique numérique (Rouvroy, 2020) où tous les problèmes paraitraient pouvoir être résolus, directement ou indirectement, par ce moyen. « L’IA » est ainsi devenue un moyen qui s’est approprié les fins et qui va contribuer, si l’on n’y prend pas garde, à encore plus fragiliser nos institutions démocratiques sur lesquelles pèse déjà un lourd discrédit. En étant promoteurs d’un environnement numérique automatisant la prise de décision pour en expurger les biais des opérateurs humains, nous contribuons en réalité à saper les fondements d’une société basée sur la délibération et la primauté du droit au profit d’un « État des algorithmes », mathématisant les rapports sociétaux.

Le trop plein d’éthique et la nécessité d’une réponse juridique

Face à ces enjeux de « l’IA », une importante et dense réponse éthique s’est constituée depuis le milieu des années 2010. En s’accordant aux décomptes de l’Agence des droits fondamentaux de l’Union européenne, plus de 260 documents, textes et chartes non contraignants auraient été produits dans le monde en décembre 2019. Fortement inspirés de la bioéthique, les principes qui en découlent paraissent se regrouper en quelques catégories désormais bien identifiées comme la transparence, la justice et l’impartialité, la bienfaisance et la non-malfaisance, l’autonomie, la responsabilité, le respect de la vie privée, la robustesse et la sécurité, etc. Sans aborder les débats portant sur la subjectivité de l’éthique, il doit être simplement constaté que cette intense production a servi l’industrie numérique à déporter le discours de la nécessaire régulation de « l’IA » dans un champ plus souple et moins contraignant. Dépourvue de sanctions, l’éthique est en effet un instrument commode d’autorégulation dont il convient bien entendu de ne pas minimiser les bienfaits, mais dont la portée reste avant tout déclaratoire. 

L’autre faiblesse de cette éthique de « l’IA » est parfaitement révélée par les méta-analyses des cadres existants (voir par exemple A. Jobin, M. Ienca, E. Vayena, The global landscape of AI ethics guidelines, Nature Machine Intelligence, 2019). Cette éthique est loin d’être univoque et nombre de principes sont polysémiques, sans aucun dispositif d’interprétation pour en assurer la cohérence (comme les tribunaux quand il s’agit d’interpréter des règles de droit). De nombreuses institutions publiques, nationales et internationales, ont publié et vont continuer vraisemblablement de publier des textes non-contraignants et ainsi contribuer à stabiliser les débats, mais l’on se retrouve encore une fois ici bien éloignés de normes contraignantes accompagnées de mécanismes rigoureux de suivi et de sanctions en cas de manquement.

C’est en cela que le mandat du Comité ad hoc sur l’IA (CAHAI) du Conseil de l’Europe s’avère original et constitue, à ce jour, la meilleure opportunité pour fonder un cadre juridique d’application de cette technologie respectueux des valeurs fondamentales de nos sociétés : les droits de l’homme, l’État de droit et la démocratie. Rappelons qu’édicter des standards juridiques en la matière relève pleinement du mandat de cette organisation internationale, qui s’est déjà illustrée dès 1981 avec la Convention 108 sur la protection des données – « grand-mère » du RGPD – ou la Convention de Budapest en matière de lutte contre la cybercriminalité en 2001. Cette expérience rend légitime le Conseil de l’Europe à intervenir, en coordination avec l’Union européenne, l’OCDE et les Nations Unies, pour poser des bases juridiques de haut niveau, transversales et non spécialisées, sur lesquelles pourront ensuite entre bâtis des textes sectoriels précis, avec un niveau de contraintes (tant ex ante qu’ex post) proportionnels à l’impact prévisible sur les individus et la société. 

Une réponse juridique contraignante est la seule à même de donner suffisamment de substance aux discours sur l’humain, à créer de la confiance… et ainsi écarter les critiques de blanchiment des technologies par l’éthique. Sans oublier d’y inclure la question de l’impact du numérique sur l’environnement, qui va également constituer l’un des enjeux majeurs de notre temps.

L’intelligence artificielle en procès : le blog

Bibliographie de l’ouvrage “L’intelligence artificielle en procès”

En complément de l’ouvrage à paraître aux Editions Bruylant (coll. Macro droit – Micro droit) “L’intelligence artificielle en procès”, un blog hébergé dans l’univers du podcast “Les temps électriques” vient d’être mis en ligne pour approfondir certains des développements du livre.

Vous trouverez sur le blog non seulement des articles, anticipant ou complétant certains des axes de l’ouvrage, mais également des extraits d’actualités en lien avec la question de la régulation de l’intelligence artificielle.

Vos commentaires et réactions seront les bienvenus, chaque contribution étant postée également sur les réseaux sociaux.